Skip to content

Advanced tutorial

Introduction

This advanced tutorial will guide you through the basic ITL capabilites. For the sake of demonstration, we will assess the perfomance metrics of the three digital products used by three different banks operating under a single bank group. The bank names are going to be as follows: E_bank_1, E_bank_2, and E_bank_3. Of course, when we speak about digital products, it is implied that we speak of e-banking web applications.

What are we going to measure and assess?

We will define five metrics that will be used within this evaluation system. The metric scores are calculated using the Python Skfuzzy Library. Metrics definitions (monitored on a monthly basis):

Metric 1: Number of complaints

Definition: The number of users' complaints about the web application performance.

Metric parameters:

Parameter Value
Fuzzy type: Type 2 ↘️
Ideal value (b) 0
Worst value (a) 5

Metric 2: Loan lead time

Definition: The average amount of time that passes between application submission and loan approval

Metric parameters:

Parameter Value
Fuzzy type: Type 2 ↘️
Ideal value (b) 0 days
Worst value (a) 15 days

Metric 3: Number of the approved loans

Definition: The number of approved loans

Metric parameters:

Parameter Value
Fuzzy type: Type 1 ↗️
Ideal value (b) 500
Worst value (a) 30

Metric 4: Application screen time

Definition: The average period of time a user spends using the web application on a daily basis

Metric parameters:

Parameter Value
Fuzzy type: Type 1 ↗️
Ideal value (b) 15 min
Worst value (a) 1 min

Metric 5: Newly issued credit cards

Definition: The number of newly issued credit cards

Metric parameters:

Parameter Value
Fuzzy type: Type 1 ↗️
Ideal value (b) 400 pcs.
Worst value (a) 100 pcs.

Assessment code

assessment "June Performance Assessment Report - E-bank Group"
{

    # We define sets of metrics for all three banks
    metrics E_bank_1
    {
        # Defining the Complaints metric
        Compl = (3,20,5)
        New_Credit_Cards = (218,100,400)
        Screen_Time = (7.4,1,15)
        New_Loans = (305,30,500)
        Loan_Lead_Time = (4.43,30,15) 
    }

    metrics E_bank_2
    {
        Compl = (1,20,5)
        New_Credit_Cards = (295,100,400)
        Screen_Time = (4.9,1,15)
        New_Loans = (352,30,500)
        Loan_Lead_Time = (8.82,30,15)
    }

    metrics E_bank_3
    {
        Compl = (4,20,5)
        New_Credit_Cards = (191,100,400)
        Screen_Time = (9.5,1,15)
        New_Loans = (254,30,500)
        Loan_Lead_Time = (2.52,30,15) 
    }


    # Print out the overall grade of all three banks
    grade cumulative E_bank_1, E_bank_2, E_bank_3;

    # Individually assess the grades of each bank
    grade singular E_bank_1, E_bank_2, E_bank_3;

    # The third bank got the worst grade.
    # Let us examine why:
    grade E_bank_3;

    # The third bank made the worst result for metrics Compl
    # and New_Credit_Cards. Let us draw them so we 
    # can examine them better:
    draw metric Compl, New_Credit_Cards from E_bank_3;

    # At the end, we will compare the overall success
    # of the first and second bank:
    grade comparative E_bank_1, E_bank_2;

    # In order to print all the original metrics data
    # we can use the following instruction:
    print E_bank_1, E_bank_2, E_bank_3;
}

What are we going to get from the assessment?

Numerical result

> Cumulative grade:
__________________

 Metric sets: {'E_bank_1': {'Compl': 40.0, 'New_Credit_Cards': 39.333, 'Screen_Time': 45.714, 'New_Loans': 58.511, 'Loan_Lead_Time': 70.467}, 'E_bank_2': {'Compl': 80.0, 'New_Credit_Cards': 65.0, 'Screen_Time': 27.857, 'New_Loans': 68.511, 'Loan_Lead_Time': 41.2}, 'E_bank_3': {'Compl': 20.0, 'New_Credit_Cards': 30.333, 'Screen_Time': 60.714, 'New_Loans': 47.66, 'Loan_Lead_Time': 83.2}}
 Grade: 52/100 points
 Grade zone: orange

 > Individual grades:
 ___________________

  Metric set: E_bank_1
  Grade: 70/100 points
  Grade zone: green

  Metric set: E_bank_2
  Grade: 41/100 points
  Grade zone: orange

  Metric set: E_bank_3
  Grade: 83/100 points
  Grade zone: green

 > Leaderboard:
 ____________________________________
 1. Metric set: ('E_bank_3', 83.2)
 2. Metric set: ('E_bank_1', 70.467)
 3. Metric set: ('E_bank_2', 41.2)


 > Metric grade:
 ______________

  Metric set: {'E_bank_3': {'Compl': 20.0, 'New_Credit_Cards': 30.333, 'Screen_Time': 60.714, 'New_Loans': 47.66, 'Loan_Lead_Time': 83.2}}
  Grade: 48/100 points
  Grade zone: orange

 > Drawing metrics: E_bank_3

   Compl 20.0

   New_Credit_Cards 30.333

 > Comparative grade:
 ___________________

  Metric sets: {'E_bank_1': {'Compl': 40.0, 'New_Credit_Cards': 39.333, 'Screen_Time': 45.714, 'New_Loans': 58.511, 'Loan_Lead_Time': 70.467}, 'E_bank_2': {'Compl': 80.0, 'New_Credit_Cards': 65.0, 'Screen_Time': 27.857, 'New_Loans': 68.511, 'Loan_Lead_Time': 41.2}}

  The metric E_bank_2 has 12% higer grade than the metric E_bank_1.
  Grades: {'E_bank_1': 51, 'E_bank_2': 57}

 > Metric sets values:
 ____________________

  Metric: E_bank_1
  Values: {'Compl': {'type': 'linear', 'data': {0: 3.0, 1: 20.0, 2: 5.0}}, 'New_Credit_Cards': {'type': 'linear', 'data': {0: 218.0, 1: 100.0, 2: 400.0}}, 'Screen_Time': {'type': 'linear', 'data': {0: 7.4, 1: 1.0, 2: 15.0}}, 'New_Loans': {'type': 'linear', 'data': {0: 305.0, 1: 30.0, 2: 500.0}}, 'Loan_Lead_Time': {'type': 'linear', 'data': {0: 4.43, 1: 30.0, 2: 15.0}}}

  Metric: E_bank_2
  Values: {'Compl': {'type': 'linear', 'data': {0: 1.0, 1: 20.0, 2: 5.0}}, 'New_Credit_Cards': {'type': 'linear', 'data': {0: 295.0, 1: 100.0, 2: 400.0}}, 'Screen_Time': {'type': 'linear', 'data': {0: 4.9, 1: 1.0, 2: 15.0}}, 'New_Loans': {'type': 'linear', 'data': {0: 352.0, 1: 30.0, 2: 500.0}}, 'Loan_Lead_Time': {'type': 'linear', 'data': {0: 8.82, 1: 30.0, 2: 15.0}}}

  Metric: E_bank_3
  Values: {'Compl': {'type': 'linear', 'data': {0: 4.0, 1: 20.0, 2: 5.0}}, 'New_Credit_Cards': {'type': 'linear', 'data': {0: 191.0, 1: 100.0, 2: 400.0}}, 'Screen_Time': {'type': 'linear', 'data': {0: 9.5, 1: 1.0, 2: 15.0}}, 'New_Loans': {'type': 'linear', 'data': {0: 254.0, 1: 30.0, 2: 500.0}}, 'Loan_Lead_Time': {'type': 'linear', 'data': {0: 2.52, 1: 30.0, 2: 15.0}}}

 > Code successufully executed.

Radar chart

Radar Chart

Comparative radar chart

Radar Comparative

Fuzzy rising metric - type 1

Rise

Fuzzy falling metric - type 2

Fall

Discussion

This documentation paragraph will be available soon.